Herbstein, F. H. (1971). Perspectives in Structural Chemistry Vol. IV, edited by J. D. Dunitz \& J. A. Ibers, pp. 166-395. New York: John Wiley.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jeffrey, G. A. \& Lewis, L. (1978). Carbohydr. Res. 60, 179-182.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Karlsson, B., Lindgren, B. O., Pilottl, A.-M. \& Söderholm, A.-M. (1977). Acta Chem. Scand. Ser. B, 31, 436-438.
lamberton, J. A., Gunawardana, Y. A. G. P. \& Bick, I. R. C. (1983). J. Nat. Prod. 46, 235-247.

Martmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.
McLaughlin, G. M., Taylor, D. \& Whimp, P. O. (1977). The ANUCR YS Structure Determination Package. Research School of Chemistry, The Australian National Univ., Canberra.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Robertson, G. B., Tooptakong, U., Lamberton, J. A., Gunawardana, Y. A. G. P. \& Bick, I. R. C. (1984). Tetrahedron Lett. 25, 2695-2696.
Robertson, G. B. \& Whimp, P. O. (1975). J. Am. Chem. Soc. 97, 1051-1059.
Tanaka, J. \& Sakabe, N. (1968). Acta Cryst. B24, 1345-1349.
Taylor, R., Kennard, O. \& Versichel, W. (1984). Acta Crysı. B40, 280-288.
Thewalt, U. \& Bugg, C. E. (1972). Acta Cryst. B28, 82-92.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1985). C41, 1335-1337

5-Acetyl-7-(\boldsymbol{N}-methylanilino)cyclohepta-2,4-dien-1-one, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$

By Carolyn B. Knobler,* Douglas E. Bugner, Orville L. Chapman and Kenneth N. Trueblood

J. D. McCullough Laboratory for X-ray Crystallography, Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024, USA

(Received 14 January 1985; accepted 2 May 1985)

Abstract

M_{r}=255.32\), orthorhombic, $P 2_{1} 2_{2} 2_{1}, a=$ 6.219 (2), $\quad b=14.176$ (5), $\quad c=15 \cdot 432$ (4) $\AA, \quad V=$ $1360.5 \AA^{3}, \quad Z=4, \quad D_{x}=1.25 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.7107 \AA, \mu=0.76 \mathrm{~cm}^{-1}, F(000)=544, \quad T=298 \mathrm{~K}$, $R=0.099$ for 1133 unique observed reflections. An interesting feature of this molecule is the very close intramolecular nonbonded $\mathrm{N} \cdots \mathrm{O}$ distance of 2.69 (1) \AA; this appears to result in displacements of some atoms from what would otherwise be coplanar configurations. The methylanilino group is in the pseudo-equatorial position, with its plane nearly perpendicular (87°) to the best plane of the diene-dione system.

Introduction. 5-Acetyl-7-(N-methylanilino)cyclohepta-2,4-dien-1-one (1) is an intermediate in the course of synthesis of 4 -vinyltropone from 2-(1-acetoxyethyl)tropone. The red color and UV spectrum of (1) have been interpreted as resulting from some form of electron donor-acceptor complexation (Bugner, 1982).

(1)

* To whom correspondence should be addressed.

0108-2701/85/091335-03\$01.50

Experimental. Preparation according to a modification (Bugner, 1982) of a synthesis developed by Dennis, Katritzky, Parton, Nomura, Takahashi \& Takeuchi (1976) and adapted by Jackson (1980); red, bladeshaped, single crystal, $0.14 \times 0.14 \times 0.40 \mathrm{~mm}$; Weissenberg photographs have systematic absences $h 00$ for h odd, $0 k 0$ for k odd, $00 l$ for l odd; Syntex $P \overline{1}$ diffractometer, graphite monochromator, unit-cell parameters by least-squares refinement of 15 reflections ($16.45 \leq 2 \theta \leq 22.23^{\circ}$), $\theta-2 \theta$ scan, $4.0^{\circ} \mathrm{min}^{-1}$ in 2θ, $2 \theta_{\max }=50^{\circ} \quad$ for range $0 \leq h \leq 7, \quad 0 \leq k \leq 16$, $0 \leq l \leq 18$, three reflections monitored every 97 reflections with 2% maximum intensity variation from average, average variation $\pm 1 \%$, e.s.d. of standards about $1 \%, 1317$ unique data, 1133 with $I>0$ used in subsequent calculations, Lorentz and polarization but no absorption correction; direct methods, all atoms (including H atoms) located on Fourier and difference Fourier maps. The phenyl ring was treated as a rigid $\mathrm{C}_{6} \mathrm{H}_{5}$ group, $\mathrm{C}-\mathrm{C}=1.395 \AA, \mathrm{C}-\mathrm{H} 1.0 \AA$, $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{H}=120^{\circ}$, with individual isotropic displacement parameters for C and fixed isotropic displacement parameters for each H atom based on that of the attached C. All other H atoms were kept in geometrically reasonable positions with $\mathrm{C}-\mathrm{H}=1.0 \AA$ and with fixed displacement parameters, as described for those attached to phenyl C atoms. All other nonhydrogen atoms have anisotropic displacement parameters; refined by full-matrix least-squares procedure based on F with © 1985 International Union of Crystallography
maximum $\sin \theta / \lambda=0.59 \AA^{-1}$; refinement of 130 parameters converged to $R=0.099, w R=0.077$, $w=1 / \sigma^{2}\left(F_{o}\right)$, error of fit $=1.57$, ratio in final cycle of maximum least-squares shift to e.s.d. 0.064 in a displacement parameter and 0.045 in a positional parameter; maximum and minimum heights of 0.1 and -0.1 e \AA^{-3} in final difference Fourier synthesis; atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); all calculations performed on DEC VAX 11/750 and VAX 11/780 computers using the UCLA Crystallographic Package (1984) (locally edited versions of CARESS, PROFILE, MULTAN, ORFLS, ORFFE, ABSORB, ORTEP, PLUTO, SHELX, and a local molecular-geometry program, MG84).

Discussion. Atomic coordinates and isotropic displacement parameters are listed in Table 1; bond lengths and angles and torsion angles are given in Table 2.* There is no significant delocalization evident from the bond distances in the diene-dione system that extends from $\mathrm{O}(1)$ to $\mathrm{O}(8)$. A PLUTO stereoview of the molecule is shown in Fig. 1. The short $\mathrm{O}(1) \cdots \mathrm{N}$ contact $[2.69$ (1) \AA] is evident in the stereoview; such close intramolecular interactions of a carbonyl O atom and a N atom separated from the carbonyl group by one intervening C atom occur whenever the corresponding $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle is not far from 0°, e.g. when it is constrained by a ring system. In the present molecule the $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle is -16°. We have been unable to find other examples of such a close contact in a diene-dione system, but a search of the Cambridge Database (Allen, Bellard, Brice, Cartwright, Doubleday, Higgs, Hummelink, Hummelink-Peters, Kennard, Motherwell, Rodgers \& Watson, 1979) revealed a number of similar contacts in other systems, some involving trigonal N atoms with their plane of hybridization more or less normal to the $\mathrm{O} \cdots \mathrm{N}$ line, as in the present molecule. They are all characterized by $\mathrm{O} \cdots \mathrm{N}$ distances around 2.6 to $2.7 \AA$. The methylanilino group is in the pseudo-equatorial position, with its plane nearly perpendicular $\left(87^{\circ}\right)$ to the best plane of the diene-dione system. The N atom is displaced $0.07 \AA$ from the least-squares plane through the methylanilino group, in a direction away from $\mathrm{O}(1)$; the methyl C atom is displaced $0.19 \AA$ to the opposite side of this plane. Presumably these displacements are a consequence of a repulsive interaction between $\mathrm{O}(1)$ and $\mathrm{N}(12)$, which are about $0.2 \AA$ closer than the sum of their van der Waals radii. The $\mathrm{O} \cdots \mathrm{N}$ line makes an

[^0]Table 1. Atomic coordinates and displacement parameters for 5-acetyl-7-(N -methylanilino)cyclo-hepta-2,4-dien-1-one
$\left\langle u^{2}\right\rangle_{\text {eq }}=\left|1 /\left(8 \pi^{2}\right)\right| B_{\text {eq }}$ (as defined by Hamilton, 1959).

	x	y	z	$\begin{gathered} \left\langle u^{2}\right\rangle_{\mathrm{eq}} /\left\langle u^{2}\right\rangle \\ \left(\dot{\AA}^{2}\right) \end{gathered}$
$\mathrm{O}(1)$	0.6479 (9)	0.2951 (3)	0.8055 (3)	0.082 (12)
C(2)	0.6481 (12)	0.3705 (5)	0.7688 (5)	0.054 (2)
C(3)	0.5215 (11)	0.4486 (5)	0.8051 (4)	0.059 (2)
C(4)	0.4752 (12)	0.5315 (5)	0.7680 (5)	0.062 (3)
C(5)	0.5446 (12)	0.5730 (4)	0.6875 (5)	0.055 (2)
C(6)	0.7326 (12)	0.5549 (4)	0.6482 (4)	0.050 (2)
C(7)	0.8001 (15)	0.6077 (5)	0.5695 (5)	0.064 (3)
O (8)	0.9787 (11)	0.5979 (4)	0.5408 (4)	$0 \cdot 103$ (3)
C(9)	0.6462 (17)	$0 \cdot 6742$ (5)	0.5263 (5)	0.086 (4)
C(10)	0.8841 (11)	0.4818 (3)	0.6804 (4)	0.048 (2)
C(11)	0.7795 (10)	0.3829 (4)	0.6856 (4)	0.046 (2)
$\mathrm{N}(12)$	0.9341 (9)	$0 \cdot 3075$ (3)	0.6752 (3)	0.050 (2)
C(13)	1.1086 (14)	$0 \cdot 3054$ (5)	0.7369 (6)	0.087 (3)
C(14)	0.8932 (6)	$0 \cdot 2268$ (2)	0.6259 (3)	0.038 (2)
C(15)	0.7048 (6)	0.2175 (2)	0.5776 (3)	0.046 (2)
C(16)	0.6732 (6)	$0 \cdot 1380$ (2)	0.5259 (3)	0.057 (2)
C(17)	0.8300 (6)	0.0677 (2)	0.5225 (3)	0.055 (2)
C(18)	1.0185 (6)	0.0770 (2)	0.5708 (3)	0.060 (2)
C(19)	1.0501 (6)	0.1566 (2)	0.6225 (3)	0.054 (2)

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ for 5-acetyl-7-(N-methylanilino)-cyclohepta-2,4-dien-1-one
E.s.d. in parentheses in units of least-significant digit of the corresponding value.

$\mathrm{O}(1)-\mathrm{C}(2) \quad 1.209(8)$	$1.209(8)$	- $\mathrm{C}(3) \quad 1.470$ (10)	
$\mathrm{C}(2)-\mathrm{C}(11) \quad 1.533$ (1.533 (10)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.339(10)$	
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.4411$	1.441 (10)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.342(10)$	
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.486$ (1.486 (10)	$\mathrm{C}(6)-\mathrm{C}(10) \quad 1.487$ (9)	
$\mathrm{C}(7)-\mathrm{O}(8) \quad 1.203$ (1.203 (11)	$\mathrm{C}(7)-\mathrm{C}(9) \quad 1.500$ (12)	
$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.547(8)$	1.547 (8)	$\mathrm{C}(11)-\mathrm{N}(12) \quad 1.44$	
$\mathrm{N}(12)-\mathrm{C}(13) \quad 1.443$ (1.443 (10)	$N(12)-C(14) \quad 1.398(6)$	
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3) \quad 119$	119.2 (6)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	119.6 (6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11) \quad 121$	121.2 (6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	127.9 (6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 131$	131.5 (7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	124.9 (6)
$C(5)-C(6)-C(7) \quad 121$	121.3 (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	$122 \cdot 3$ (6)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10) \quad 116$	116.4 (6)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	$120 \cdot 2$ (7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9) \quad 119$	119.9 (7)	$\mathrm{O}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	119.8 (7)
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11) \quad 112$	112.5 (5)	$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	111.8 (5)
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{N}(12) \quad 111$	111.3 (5)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)$	112.6 (5)
$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13) \quad 116$) 116.3 (5)	$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)$	123.0 (5)
$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(14) \quad 118$) 118.6 (5)	$\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(15)$	121.4(4)
$\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(19) \quad 118$) 118.5 (4)		
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	(4) $\quad-169.0$ (7)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	$-142.7(6)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{N}(12)$	N(12) -15.8(9)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{C}(10)$	37.4 (8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{N}(12)$	$N(12) \quad 164 \cdot 3(6)$	$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	10.9(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	(5) -5.6(13)	$C(3)-C(4)-C(5)-C(6)$	-28.1 (13)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	(7) $\quad-174.1$ (7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)$	$5 \cdot 8(11)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	(8) $\quad 171.8$ (8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	-7.5(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11)$	C(11) $\quad 57.4$ (8)	$C(7)-C(6)-C(10)-C(11)$	$-122.7(7)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(8)$	$\mathrm{O}(8) \quad-8.2(10)$	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	$172 \cdot 6$ (7)
$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	$-\mathrm{C}(2) \quad-82.0$ (7)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)$	151.9(6)
$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)$	- $\mathrm{C}(13)-67.9(7)$	$\mathrm{C}(2)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)$) $95.0(6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(13)$	$)-\mathrm{C}(13) \quad 58.5$ (7)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)$	4) -138.6 (5)
$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(15)$	- $\mathrm{C}(15) \quad 5 \cdot 2$ (7)	$\mathrm{C}(11)-\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(19)$	9)-177.7 (5)
$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(15)$	-C(15) 167.7(6)	$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{C}(14)-\mathrm{C}(19)$	9) $-15 \cdot 2$ (7)

Fig. I. Stereoview of the molecule, showing the numbering scheme.
angle of 24° with the normal to the plane. The hybridization at the N atom is. not far from $s p^{2}$, with an unshared electron pair in a p orbital directed toward one of the $s p^{2}$ orbitals on $\mathrm{O}(1)$, which is occupied by an unshared pair on that atom. Study of molecular models suggests that the methylanilino group could comfortably occupy a pseudo-axial position, which would place the phenyl ring above the dienedione system. Apparently, however, that conformation is not favored even in solution; NMR evidence (Bugner, 1982) indicates that the conformation found in the crystal (Fig. 1) is also present in CDCl_{3} solution.

There are no unusual intermolecular distances; the shortest intermolecular distance not involving hydrogen is $3.35 \AA$, from $\mathrm{O}(8)$ to $\mathrm{C}(17)\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$.

This work was supported in part by a grant from the National Science Foundation (CHE82-05803).

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Bugner, D. E. (1982). The Preparation and Properties of Vinyltropones. PhD Thesis, Univ. of California, Los Angeles.
Dennis, N., Katritzky, A. R., Parton, S. K., Nomura, Y., Takahashi, Y. \& Takeuchi, Y. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2289-2296.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Jackson, J. L. (1980). Preparation of 4-Acetyltropone: Method and Scope. PhD Thesis, Univ. of California, Los Angeles.
UCLA Crystallographic Package (1984). Univ. of California, Los Angeles.

Acta Cryst. (1985). C41, 1337-1340

$\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathbf{O C H}_{3}\right)_{6}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}$, An Expanded Hemispherand

By Carolyn B. Knobler, K. N. Trueblood,* Mark deGrandpre and D. J. Cram
J. D. McCullough X-ray Crystallography Laboratory, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024, USA

(Received 4 February 1985; accepted 14 May 1985)

Abstract

Hexamethoxy-28-thiaheptacyclo[28.3.1.1 $\left.{ }^{2,6} .1^{7,11} .1^{12,16} .1^{17,21} .1^{22,26}\right]$ nonatriaconta-1(34),2,4,6(39), $7,9,11(38), 12,14,16(37), 17,19,21(36), 22$,-24,26(35),30,32-octadecaene, $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}, M_{r}=696 \cdot 87$, monoclinic, $\quad C c, \quad a=12.693$ (4), $\quad b=18.382$ (9), $c=16.009$ (7) $\AA, \quad \beta=99.50(3)^{\circ}, \quad V=3684$ (3) \AA^{3}, $Z=4, D_{x}=1.26 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.7107 \AA, \mu=$ $1.26 \mathrm{~cm}^{-1}, F(000)=1472, T=295 \mathrm{~K}, R=0.092$ for 3155 unique nonzero reflections. The molecule has an approximate (non-crystallographic) twofold axis. The methoxy methyl groups nearest to the $-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-$ unit turn inward, occupying the cavity of this uncomplexed host molecule. The remaining four methoxy methyl groups are directed outward, in an alternating up-down-up-down arrangement. The $-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-$ linkage provides conformational flexibility relative to the prototype spherand, $\left(\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{CH}_{3}\right)_{6}$.

[^1]0108-2701/85/091337-04\$01.50

Introduction. Hemispherands have been defined as hosts for which at least half of the cavity has been preorganized during synthesis, but which must undergo partial conformational reorganization during complexation (Cram \& Trueblood, 1981). The title compound (1) was designed, with the help of CPK molecular models, to have a cavity complementary to larger monatomic cations, such as K^{+}and Rb^{+}, and in fact does complex these two cations more strongly than it does either Na^{+}or Cs^{+}(Cram, deGrandpre, Knobler \& Trueblood, 1984).

Experimental. (1) prepared as described (Cram et al., 1984) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene. Colorless parallelepiped, $0.35 \times 0.36 \times 0.50 \mathrm{~mm}$, Syntex $P \overline{1}$ diffractometer, graphite monochromator, orientation matrix and unit-cell dimensions from 15 carefully centered reflections with $2 \theta<24^{\circ}$; intensities measured for $2 \theta<50^{\circ}$ ($h_{\max }=15, k_{\max }=20, l=-18$ to 18), $\theta-2 \theta$ scan, $4^{\circ} \mathrm{min}^{-1}$ in 2θ, from 1° below $K \alpha_{1}$ to 1° above $K \alpha_{2}$; intensities of three standard reflections © 1985 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic displacement parameters and hydrogen-atom parameters and angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42206 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

